مبرهنة ستوكس
مبرهنة ستوكس،[ملاحظة 1][1] معروفة أيضًا باسم مبرهنة كلفن-ستوكس،[2][3] تيمنًا بعالِمَي الرياضيات لورد كلفن وجورج ستوكس، أو المبرهنة الأساسية للدوران[ملاحظة 2] أو ببساطة مبرهنة الدوران،[ملاحظة 3][4] هي مبرهنة في حساب المتجهات على . بالنظر إلى حقل متجهي، تربط المبرهنة تكامل دوران الحقل المتجهي على بعض السطح، بالتكامل الخطي للحقل المتجهي حول حدود السطح.
جزء من | |
---|---|
سُمِّي باسم | |
يُصوِّر | |
يدرسه | |
تعريف الصيغة | |
الرموز في الصيغة | |
تعميم لـ |
إذا كان الحقل المتجهي معرفة في منطقة ذات سطح أملس موجه وله مشتقات جزئية مستمرة من المرتبة الأولى، فإن:
حيث هي حدود المنطقة ذات سطح أملس .
يمكن ذكر مبرهنة ستوكس الكلاسيكية المذكورة أعلاه في جملة واحدة: التكامل الخطي لحقل متجه على عُرْوة (Loop) يساوي تدفق دورانه عبر السطح المغلق.
مبرهنة ستوكس هي حالة خاصة لمبرهنة ستوكس المعممة.[5][6] على وجه الخصوص، يمكن اعتبار حقل المتجه على أحادي الصورة وفي هذه الحالة يكون دورانه هو مشتقه الخارجي، ثنائي الصورة.
هوامش
عدلمراجع
عدل- ^ Stewart, James (2012). Calculus - Early Transcendentals (بالإنجليزية) (7th ed.). Brooks/Cole Cengage Learning. pp. 1122. ISBN:978-0-538-49790-9.
- ^ Nagayoshi Iwahori, et al.:"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12 (ردمك 978-4-7853-1039-4) [1](باليابانية) نسخة محفوظة 2020-07-18 على موقع واي باك مشين.
- ^ Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" Bai-Fu-Kan(jp)(1979/01) (ردمك 978-4563004415) (باليابانية)
- ^ Griffiths, David (2013). Introduction to Electrodynamics (بالإنجليزية). Pearson. p. 34. ISBN:978-0-321-85656-2.
- ^ Conlon، Lawrence (2008). Differentiable Manifolds. Modern Birkhauser Classics. Boston: Birkhaeuser.
- ^ Lee، John M. (2002). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer. ج. 218.