مبرهنات عدم الاكتمال لغودل
مبرهنة ليس هناك نظرية كاملة ودقيقة
مبرهنات عدم الاكتمال لغودل هما مبرهنتان في المنطق الرياضي برهنَ عليهما كورت غودل في عام 1931.[2][3][4] وهما نظريتان تنصّان على حدود جميع الأنظمة الشكلية في الحساب. تعتبر هاتان النظريتان مهمتين في فلسفة الرياضيات، وتستخدمان لإثبات استحالة إيجاد مجموعة كاملة من البديهيات لكل علم الرياضيات ببرنامج هيلبرت، ممَّا يعطي جواباً سلبياً -بالتالي- لمسألة هلبرت الثانية.
مبرهنات عدم الاكتمال لغودل
جزء من | |
---|---|
سُمِّي باسم | |
يدرسه | |
أثبته | |
لديه جزء أو أجزاء |
مبرهنة عدم الاكتمال الأولى
عدلتنص مبرهنة عدم الاكتمال الأولى لغودل على ما يلي:
- أي نظرية مولدة بشكل كفؤ قادرة على التعبير عن الحساب الابتدائي لا يمكن أن تكون كاملة وراسخة في وقت واحد. على وجه الخصوص، توجد مقابل كلّ نظرية راسخة مولدة بشكل كفؤ (والتي تبرهن حقيقة حسابية بسيطة) عبارة حسابية أخرى تكون محققة ولكنها غير مبرهنة بالنظرية.
فيتغنشتاين وغودل
عدلانظر لودفيش فيتغنشتاين.
مراجع
عدل- ^ مُعرِّف موسوعة بريتانيكا على الإنترنت (EBID): topic/incompleteness-theorem. الاقتباس: Incompleteness theorem, in foundations of mathematics, [...].
- ^ "معلومات عن مبرهنات عدم الاكتمال لغودل على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 2019-09-27.
- ^ "معلومات عن مبرهنات عدم الاكتمال لغودل على موقع universalis.fr". universalis.fr. مؤرشف من الأصل في 2019-07-25.
- ^ "معلومات عن مبرهنات عدم الاكتمال لغودل على موقع d-nb.info". d-nb.info. مؤرشف من الأصل في 2020-05-26.