مشتقات الدوال المثلثية ودوالها العكسية
عدل
d
d
x
sin
(
x
)
=
cos
(
x
)
{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)}
d
d
x
cos
(
x
)
=
−
sin
(
x
)
{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)}
d
d
x
tan
(
x
)
=
(
sin
(
x
)
cos
(
x
)
)
′
=
cos
2
(
x
)
+
sin
2
(
x
)
cos
2
(
x
)
=
1
cos
2
(
x
)
=
sec
2
(
x
)
{\displaystyle {\frac {d}{dx}}\tan(x)=\left({\frac {\sin(x)}{\cos(x)}}\right)'={\frac {\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}}={\frac {1}{\cos ^{2}(x)}}=\sec ^{2}(x)}
d
d
x
cot
(
x
)
=
(
cos
(
x
)
sin
(
x
)
)
′
=
−
sin
2
(
x
)
−
cos
2
(
x
)
sin
2
(
x
)
=
−
1
sin
2
(
x
)
=
−
csc
2
(
x
)
{\displaystyle {\frac {d}{dx}}\cot(x)=\left({\frac {\cos(x)}{\sin(x)}}\right)'={\frac {-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)}}={\frac {-1}{\sin ^{2}(x)}}=-\csc ^{2}(x)}
d
d
x
sec
(
x
)
=
(
1
cos
(
x
)
)
′
=
sin
(
x
)
cos
2
(
x
)
=
1
cos
(
x
)
⋅
sin
(
x
)
cos
(
x
)
=
sec
(
x
)
tan
(
x
)
{\displaystyle {\frac {d}{dx}}\sec(x)=\left({\frac {1}{\cos(x)}}\right)'={\frac {\sin(x)}{\cos ^{2}(x)}}={\frac {1}{\cos(x)}}\cdot {\frac {\sin(x)}{\cos(x)}}=\sec(x)\tan(x)}
d
d
x
csc
(
x
)
=
(
1
sin
(
x
)
)
′
=
−
cos
(
x
)
sin
2
(
x
)
=
−
1
sin
(
x
)
⋅
cos
(
x
)
sin
(
x
)
=
−
csc
(
x
)
cot
(
x
)
{\displaystyle {\frac {d}{dx}}\csc(x)=\left({\frac {1}{\sin(x)}}\right)'=-{\frac {\cos(x)}{\sin ^{2}(x)}}=-{\frac {1}{\sin(x)}}\cdot {\frac {\cos(x)}{\sin(x)}}=-\csc(x)\cot(x)}
d
d
x
arcsin
(
x
)
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
arccos
(
x
)
=
−
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arccos(x)={\frac {-1}{\sqrt {1-x^{2}}}}}
d
d
x
arctan
(
x
)
=
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}
d
d
x
arccot
(
x
)
=
−
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}{\mbox{arccot}}(x)={\frac {-1}{1+x^{2}}}}
d
d
x
arcsec
(
x
)
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}{\mbox{arcsec}}(x)={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
arccsc
(
x
)
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}{\mbox{arccsc}}(x)={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}}
إثبات مشتقات الدوال المثلثية
عدل
نهاية sin(θ )/θ لما θ يؤول إلى 0
عدل
دائرة ذات المركز O ونصف القطر 1
العصر: منحنيا y = 1 و y = cos θ موضحة باللون الأحمر، ومنحنى y = sin(θ)/θ موضح باللون الأزرق.
يوضح الرسم البياني الموجود على اليسار دائرة ذات المركز O ونصف القطر r = 1. لتكن OA و OB اثنين من نصف القطر يصنعان قوس قياسه θ راديان. بما أننا اعتبرنا النهاية لما θ يؤول إلى الصفر، فقد نفترض أن θ هو عدد موجب صغير، نقول 0 < θ < ½ في الربع الأول.
في الرسم البياني، ليكن R1 المثلث OAB و R2 القطاع الدائري OAB و R3 المثلث OAC. مساحة المثلث OAB هي:
A
r
e
a
(
R
1
)
=
1
2
|
O
A
|
|
O
B
|
sin
θ
=
1
2
sin
θ
.
{\displaystyle \mathrm {Area} (R_{1})={\tfrac {1}{2}}\ |OA|\ |OB|\sin \theta ={\tfrac {1}{2}}\sin \theta \,.}
مساحة القطاع الدائري OAB هي:
A
r
e
a
(
R
2
)
=
1
2
θ
{\displaystyle \mathrm {Area} (R_{2})={\tfrac {1}{2}}\theta }
، بينما مساحة المثلث OAC معطاة بواسطة:
A
r
e
a
(
R
3
)
=
1
2
|
O
A
|
|
A
C
|
=
1
2
tan
θ
.
{\displaystyle \mathrm {Area} (R_{3})={\tfrac {1}{2}}\ |OA|\ |AC|={\tfrac {1}{2}}\tan \theta \,.}
بما أن كل منطقة تقع في المنطقة التالية، فإن:
Area
(
R
1
)
<
Area
(
R
2
)
<
Area
(
R
3
)
⟺
1
2
sin
θ
<
1
2
θ
<
1
2
tan
θ
.
{\displaystyle {\text{Area}}(R_{1})<{\text{Area}}(R_{2})<{\text{Area}}(R_{3})\iff {\tfrac {1}{2}}\sin \theta <{\tfrac {1}{2}}\theta <{\tfrac {1}{2}}\tan \theta \,.}
زيادة على ذلك، بما أن sin θ > 0 في الربع الأول، فيمكننا القسمة على ½ sin θ ، معطيًا:
1
<
θ
sin
θ
<
1
cos
θ
⟹
1
>
sin
θ
θ
>
cos
θ
.
{\displaystyle 1<{\frac {\theta }{\sin \theta }}<{\frac {1}{\cos \theta }}\implies 1>{\frac {\sin \theta }{\theta }}>\cos \theta \,.}
في الخطوة الأخيرة، أخذنا مقاليب الحدود الموجبة الثلاثة، وعكسنا المتباينة.
نستنتج أنه من أجل 0 < θ < ½ π ، يكون مقدار sin(θ )/θ دائما أقل من 1 ودائمًا أكبر من cos(θ). وهكذا، عندما تقترب θ من 0، فإن sin(θ )/θ «عُصِرت » بين سقف ارتفاعه 1 وأرضية ارتفاعها cos θ ، والتي ترتفع نحو 1؛ لذلك يجب أن تؤول sin(θ )/θ إلى 1؛ حيث أن θ تؤول إلى 0 من الجهة الموجبة:
lim
θ
→
0
+
sin
θ
θ
=
1
.
{\displaystyle \lim _{\theta \to 0^{+}}{\frac {\sin \theta }{\theta }}=1\,.}
بالنسبة للحالة التي تكون فيها θ عددًا سالبًا صغيرًا –½ π < θ < 0 ، نستخدم حقيقة أن الجيب دالة فردية :
lim
θ
→
0
−
sin
θ
θ
=
lim
θ
→
0
+
sin
(
−
θ
)
−
θ
=
lim
θ
→
0
+
−
sin
θ
−
θ
=
lim
θ
→
0
+
sin
θ
θ
=
1
.
{\displaystyle \lim _{\theta \to 0^{-}}\!{\frac {\sin \theta }{\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin(-\theta )}{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {-\sin \theta }{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin \theta }{\theta }}\ =\ 1\,.}
نهاية (cos(θ)-1)/θ لما θ يؤول إلى 0
عدل
يتيح لنا القسم الأخير حساب هذه النهاية الجديدة بسهولة نسبية. يتم ذلك عن طريق استخدام حيلة بسيطة. في هذا الحساب، إشارة θ غير مهمة.
lim
θ
→
0
cos
θ
−
1
θ
=
lim
θ
→
0
(
cos
θ
−
1
θ
)
(
cos
θ
+
1
cos
θ
+
1
)
=
lim
θ
→
0
cos
2
θ
−
1
θ
(
cos
θ
+
1
)
.
{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\left({\frac {\cos \theta -1}{\theta }}\right)\!\!\left({\frac {\cos \theta +1}{\cos \theta +1}}\right)\ =\ \lim _{\theta \to 0}\,{\frac {\cos ^{2}\!\theta -1}{\theta \,(\cos \theta +1)}}.}
باستخدام هذه المتطابقة cos2 θ – 1 = –sin2 θ ،
حقيقة أن نهاية الجداء هو جداء النهايات، ونتيجة النهاية من القسم السابق، نجد أن:
lim
θ
→
0
cos
θ
−
1
θ
=
lim
θ
→
0
−
sin
2
θ
θ
(
cos
θ
+
1
)
=
(
−
lim
θ
→
0
sin
θ
θ
)
(
lim
θ
→
0
sin
θ
cos
θ
+
1
)
=
(
−
1
)
(
0
2
)
=
0
.
{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\,{\frac {-\sin ^{2}\theta }{\theta (\cos \theta +1)}}\ =\ \left(-\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}\,{\frac {\sin \theta }{\cos \theta +1}}\right)\ =\ (-1)\left({\frac {0}{2}}\right)=0\,.}
نهاية (tan(θ))/θ لما θ يؤول إلى 0
عدل
باستخدام نهاية دالة الجيب ، وحقيقة أن دالة الظل فردية، وحقيقة أن نهاية الجداء هو جداء النهايات، نجد:
lim
θ
→
0
tan
θ
θ
=
(
lim
θ
→
0
sin
θ
θ
)
(
lim
θ
→
0
1
cos
θ
)
=
(
1
)
(
1
)
=
1
.
{\displaystyle \lim _{\theta \to 0}{\frac {\tan \theta }{\theta }}\ =\ \left(\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}{\frac {1}{\cos \theta }}\right)\ =\ (1)(1)\ =\ 1\,.}
نحسب مشتق دالة الجيب باستخدام تعريف بواسطة النهاية:
d
d
θ
sin
θ
=
lim
δ
→
0
sin
(
θ
+
δ
)
−
sin
θ
δ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin(\theta +\delta )-\sin \theta }{\delta }}.}
باستخدام متطابقة مجموع زاويتين sin(α+β) = sin α cos β + sin β cos α ، لدينا:
d
d
θ
sin
θ
=
lim
δ
→
0
sin
θ
cos
δ
+
sin
δ
cos
θ
−
sin
θ
δ
=
lim
δ
→
0
(
sin
δ
δ
cos
θ
+
cos
δ
−
1
δ
sin
θ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin \theta \cos \delta +\sin \delta \cos \theta -\sin \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\sin \delta }{\delta }}\cos \theta +{\frac {\cos \delta -1}{\delta }}\sin \theta \right).}
باستخدام نهايتي كل من دالة الجيب وجيب التمام:
d
d
θ
sin
θ
=
(
1
)
cos
θ
+
(
0
)
sin
θ
=
cos
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =(1)\cos \theta +(0)\sin \theta =\cos \theta \,.}
مرة أخرى نحسب مشتق دالة جيب التمام من تعريف بواسطة النهاية:
باستخدام متطابقة مجموع زاويتين cos(α+β) = cos α cos β – sin α sin β ، لدينا:
d
d
θ
cos
θ
=
lim
δ
→
0
cos
θ
cos
δ
−
sin
θ
sin
δ
−
cos
θ
δ
=
lim
δ
→
0
(
cos
δ
−
1
δ
cos
θ
−
sin
δ
δ
sin
θ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =\lim _{\delta \to 0}{\frac {\cos \theta \cos \delta -\sin \theta \sin \delta -\cos \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\cos \delta -1}{\delta }}\cos \theta \,-\,{\frac {\sin \delta }{\delta }}\sin \theta \right).}
باستخدام النهايات الأولى:
d
d
θ
cos
θ
=
(
0
)
cos
θ
−
(
1
)
sin
θ
=
−
sin
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =(0)\cos \theta -(1)\sin \theta =-\sin \theta \,.}
لحساب مشتق دالة جيب التمام من قاعدة السلسلة [ ملاحظة 1] ، لاحظ أولاً الحقائق الثلاث التالية:
cos
θ
=
sin
(
π
2
−
θ
)
{\displaystyle \cos \theta =\sin \left({\tfrac {\pi }{2}}-\theta \right)}
sin
θ
=
cos
(
π
2
−
θ
)
{\displaystyle \sin \theta =\cos \left({\tfrac {\pi }{2}}-\theta \right)}
d
d
θ
sin
θ
=
cos
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \theta =\cos \theta }
الأولى والثانية هما متطبقتان مثلثيتان، والثالث تم إثباته أعلاه. باستخدام هذه الحقائق الثلاث، يمكننا كتابة ما يلي:
d
d
θ
cos
θ
=
d
d
θ
sin
(
π
2
−
θ
)
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta ={\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \left({\tfrac {\pi }{2}}-\theta \right)}
يمكن اشتقاقها باستخدام قاعدة السلسلة. لتكن
f
(
x
)
=
sin
x
{\displaystyle f(x)=\sin x}
و
g
(
θ
)
=
π
2
−
θ
{\displaystyle g(\theta )={\tfrac {\pi }{2}}-\theta }
، لدينا:
d
d
θ
f
(
g
(
θ
)
)
=
f
′
(
g
(
θ
)
)
⋅
g
′
(
θ
)
=
cos
(
π
2
−
θ
)
⋅
(
0
−
1
)
=
−
sin
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}f\!\left(g\!\left(\theta \right)\right)=f^{\prime }\!\left(g\!\left(\theta \right)\right)\cdot g^{\prime }\!\left(\theta \right)=\cos \left({\tfrac {\pi }{2}}-\theta \right)\cdot (0-1)=-\sin \theta }
إذن:
d
d
θ
cos
θ
=
−
sin
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta =-\sin \theta }
.
لحساب مشتق دالة الظل tan θ ، نستخدم تعريف بواسطة النهاية:
d
d
θ
tan
θ
=
lim
δ
→
0
(
tan
(
θ
+
δ
)
−
tan
θ
δ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left({\frac {\tan(\theta +\delta )-\tan \theta }{\delta }}\right).}
باستخدام المتطابقة المعروفة:
tan(α+β) = (tan α + tan β) / (1 - tan α tan β) ، لدينا:
d
d
θ
tan
θ
=
lim
δ
→
0
[
tan
θ
+
tan
δ
1
−
tan
θ
tan
δ
−
tan
θ
δ
]
=
lim
δ
→
0
[
tan
θ
+
tan
δ
−
tan
θ
+
tan
2
θ
tan
δ
δ
(
1
−
tan
θ
tan
δ
)
]
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left[{\frac {{\frac {\tan \theta +\tan \delta }{1-\tan \theta \tan \delta }}-\tan \theta }{\delta }}\right]=\lim _{\delta \to 0}\left[{\frac {\tan \theta +\tan \delta -\tan \theta +\tan ^{2}\theta \tan \delta }{\delta \left(1-\tan \theta \tan \delta \right)}}\right].}
باستخدام حقيقة أن نهاية الجداء هو جداء نهايتين:
d
d
θ
tan
θ
=
lim
δ
→
0
tan
δ
δ
×
lim
δ
→
0
(
1
+
tan
2
θ
1
−
tan
θ
tan
δ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}{\frac {\tan \delta }{\delta }}\times \lim _{\delta \to 0}\left({\frac {1+\tan ^{2}\theta }{1-\tan \theta \tan \delta }}\right).}
باستخدام النهاية الخاصة بدالة الظل، وحقيقة أن tan δ يؤول إلى 0 حيث δ يؤول إلى 0:
d
d
θ
tan
θ
=
1
×
1
+
tan
2
θ
1
−
0
=
1
+
tan
2
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1\times {\frac {1+\tan ^{2}\theta }{1-0}}=1+\tan ^{2}\theta .}
نرى على الفور أن:
d
d
θ
tan
θ
=
1
+
sin
2
θ
cos
2
θ
=
cos
2
θ
+
sin
2
θ
cos
2
θ
=
1
cos
2
θ
=
sec
2
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1+{\frac {\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta \,.}
يمكن للمرء حساب مشتق دالة الظل باستخدام قاعدة ناتج القسمة .
d
d
θ
tan
θ
=
d
d
θ
sin
θ
cos
θ
=
(
sin
θ
)
′
⋅
cos
θ
−
sin
θ
⋅
(
cos
θ
)
′
cos
2
θ
=
cos
2
θ
+
sin
2
θ
cos
2
θ
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta ={\frac {\operatorname {d} }{\operatorname {d} \!\theta }}{\frac {\sin \theta }{\cos \theta }}={\frac {\left(\sin \theta \right)^{\prime }\cdot \cos \theta -\sin \theta \cdot \left(\cos \theta \right)^{\prime }}{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}}
يمكن تبسيط البسط إلى 1 بواسطة متطابقة فيثاغورس ، يعطينا:
1
cos
2
θ
=
sec
2
θ
{\displaystyle {\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta }
إذن:
d
d
θ
tan
θ
=
sec
2
θ
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta =\sec ^{2}\theta }
إثبات مشتقات الدوال المثلثية العكسية
عدل
يتم إيجاد المشتقات التالية عن طريق وضع متغير y يساوي الدالة المثلثية العكسية التي نرغب في إيجاد مشتقها. باستخدام التفاضل الضمني ثم الحل لـ dy /dx ، يتم إيجاد مشتق الدالة العكسية بدلالة y. لتحويل dy /dx مرة أخرى إلى كونها بدلالة x، يمكننا رسم مثلث مرجعي على دائرة الوحدة، نعتبر θ هي y. باستخدام مبرهنة فيثاغورس وتعريف الدوال المثلثية العادية، يمكننا في النهاية التعبير عن dy /dx بدلالة x.
اشتقاق دالة الجيب العكسية
عدل
نعتبر الدالة
y
=
arcsin
x
{\displaystyle y=\arcsin x\,\!}
حيث
−
π
2
≤
y
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}}}
بالتعريف
sin
y
=
x
{\displaystyle \sin y=x\,\!}
نشتق كلا طرفي الأخيرة بالنسبة لـ
x
{\displaystyle x}
وحل لـ dy /dx :
d
d
x
sin
y
=
d
d
x
x
{\displaystyle {d \over dx}\sin y={d \over dx}x}
cos
y
⋅
d
y
d
x
=
1
{\displaystyle \cos y\cdot {dy \over dx}=1\,\!}
نعوض بـ
cos
y
=
1
−
sin
2
y
{\displaystyle \cos y={\sqrt {1-\sin ^{2}y}}}
:
1
−
sin
2
y
⋅
d
y
d
x
=
1
{\displaystyle {\sqrt {1-\sin ^{2}y}}\cdot {dy \over dx}=1}
نعوض بـ
x
=
sin
y
{\displaystyle x=\sin y}
:
1
−
x
2
⋅
d
y
d
x
=
1
{\displaystyle {\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
d
y
d
x
=
1
1
−
x
2
{\displaystyle {dy \over dx}={\frac {1}{\sqrt {1-x^{2}}}}}
اشتقاق دالة جيب التمام العكسية
عدل
نعتبر الدالة
y
=
arccos
x
{\displaystyle y=\arccos x\,\!}
حيث
0
≤
y
≤
π
{\displaystyle 0\leq y\leq \pi }
بالتعريف
cos
y
=
x
{\displaystyle \cos y=x\,\!}
نشتق كلا طرفي الأخيرة بالنسبة لـ
x
{\displaystyle x}
وحل لـ dy /dx :
d
d
x
cos
y
=
d
d
x
x
{\displaystyle {d \over dx}\cos y={d \over dx}x}
−
sin
y
⋅
d
y
d
x
=
1
{\displaystyle -\sin y\cdot {dy \over dx}=1}
نعوض بـ
sin
y
=
1
−
cos
2
y
{\displaystyle \sin y={\sqrt {1-\cos ^{2}y}}\,\!}
:
−
1
−
cos
2
y
⋅
d
y
d
x
=
1
{\displaystyle -{\sqrt {1-\cos ^{2}y}}\cdot {dy \over dx}=1}
نعوض بـ
x
=
cos
y
{\displaystyle x=\cos y\,\!}
:
−
1
−
x
2
⋅
d
y
d
x
=
1
{\displaystyle -{\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
d
y
d
x
=
−
1
1
−
x
2
{\displaystyle {dy \over dx}=-{\frac {1}{\sqrt {1-x^{2}}}}}
اشتقاق دالة الظل العكسية
عدل
نعتبر الدالة
y
=
arctan
x
{\displaystyle y=\arctan x\,\!}
حيث
−
π
2
<
y
<
π
2
{\displaystyle -{\frac {\pi }{2}}<y<{\frac {\pi }{2}}}
بالتعريف
tan
y
=
x
{\displaystyle \tan y=x\,\!}
نشتق كلا طرفي الأخيرة بالنسبة لـ
x
{\displaystyle x}
وحل لـ dy /dx :
d
d
x
tan
y
=
d
d
x
x
{\displaystyle {d \over dx}\tan y={d \over dx}x}
الطرف الأيسر:
d
d
x
tan
y
=
sec
2
y
⋅
d
y
d
x
=
(
1
+
tan
2
y
)
d
y
d
x
{\displaystyle {d \over dx}\tan y=\sec ^{2}y\cdot {dy \over dx}=(1+\tan ^{2}y){dy \over dx}}
باستخدام متطابقة فيثاغورس
الطرف الأيمن:
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
ومنه:
(
1
+
tan
2
y
)
d
y
d
x
=
1
{\displaystyle (1+\tan ^{2}y){dy \over dx}=1}
نعوض بـ
x
=
tan
y
{\displaystyle x=\tan y\,\!}
، نحصل على:
(
1
+
x
2
)
d
y
d
x
=
1
{\displaystyle (1+x^{2}){dy \over dx}=1}
d
y
d
x
=
1
1
+
x
2
{\displaystyle {dy \over dx}={\frac {1}{1+x^{2}}}}
اشتقاق دالة ظل التمام العكسية
عدل
نعتبر الدالة
y
=
arccot
x
{\displaystyle y=\operatorname {arccot} x}
حيث
0
<
y
<
π
{\displaystyle 0<y<\pi }
.
بالتعريف
cot
y
=
x
{\displaystyle \cot y=x}
نشتق كلا طرفي الأخيرة بالنسبة لـ
x
{\displaystyle x}
وحل لـ dy /dx :
d
d
x
cot
y
=
d
d
x
x
{\displaystyle {\frac {d}{dx}}\cot y={\frac {d}{dx}}x}
الطرف الأيسر:
d
d
x
cot
y
=
−
csc
2
y
⋅
d
y
d
x
=
−
(
1
+
cot
2
y
)
d
y
d
x
{\displaystyle {d \over dx}\cot y=-\csc ^{2}y\cdot {dy \over dx}=-(1+\cot ^{2}y){dy \over dx}}
باستخدام متطابقة فيثاغورس
الطرف الأيمن:
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
ومنه،
−
(
1
+
cot
2
y
)
d
y
d
x
=
1
{\displaystyle -(1+\cot ^{2}y){\frac {dy}{dx}}=1}
نعوض بـ
x
=
cot
y
{\displaystyle x=\cot y}
:
−
(
1
+
x
2
)
d
y
d
x
=
1
{\displaystyle -(1+x^{2}){\frac {dy}{dx}}=1}
d
y
d
x
=
−
1
1
+
x
2
{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{1+x^{2}}}}
اشتقاق دالة القاطع العكسية
عدل
باستخدام التفاضل الضمني
عدل
نعتبر الدالة:
y
=
arcsec
x
|
x
|
≥
1
{\displaystyle y=\operatorname {arcsec} x\ \ |x|\geq 1}
بالتعريف
x
=
sec
y
y
∈
[
0
,
π
2
)
∪
(
π
2
,
π
]
{\displaystyle x=\sec y\ \ y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}
d
x
d
y
=
sec
y
tan
y
=
|
x
|
x
2
−
1
{\displaystyle {\frac {dx}{dy}}=\sec y\tan y=|x|{\sqrt {x^{2}-1}}}
(القيمة المطلقة في التعبير ضرورية حيث أن جداء القاطع والظل في مجال y يكون دائمًا غير سالب، بينما العبارة
x
2
−
1
{\displaystyle {\sqrt {x^{2}-1}}}
دائمًا غير سالبة بتعريف الجذر التربيعي الرئيسي، لذلك يجب أن يكون العامل المتبقي غير سالب، والذي يتحقق باستخدام القيمة المطلقة لـ x.)
d
y
d
x
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
باستخدام قاعدة السلسلة
عدل
بدلاً من ذلك، يمكن اشتقاق دالة القاطع العكسية من مشتق دالة جيب التمام العكسية باستخدام قاعدة السلسلة .
لتكن
y
=
arcsec
x
=
arccos
(
1
x
)
{\displaystyle y=\operatorname {arcsec} x=\arccos \left({\frac {1}{x}}\right)}
حيث
|
x
|
≥
1
{\displaystyle |x|\geq 1}
و
y
∈
[
0
,
π
2
)
∪
(
π
2
,
π
]
{\displaystyle y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}
وبعد ذلك، بتطبيق قاعدة السلسلة على
arccos
(
1
x
)
{\displaystyle \arccos \left({\frac {1}{x}}\right)}
:
d
y
d
x
=
−
1
1
−
(
1
x
)
2
⋅
(
−
1
x
2
)
=
1
x
2
1
−
1
x
2
=
1
x
2
x
2
−
1
x
2
=
1
x
2
x
2
−
1
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)={\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}={\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}={\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
اشتقاق دالة قاطع التمام العكسية
عدل
باستخدام التفاضل الضمني
عدل
لتكن
y
=
arccsc
x
|
x
|
≥
1
{\displaystyle y=\operatorname {arccsc} x\ \ |x|\geq 1}
بالتعريف:
x
=
csc
y
y
∈
[
−
π
2
,
0
)
∪
(
0
,
π
2
]
{\displaystyle x=\csc y\ \ \ y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}
d
x
d
y
=
−
csc
y
cot
y
=
−
|
x
|
x
2
−
1
{\displaystyle {\frac {dx}{dy}}=-\csc y\cot y=-|x|{\sqrt {x^{2}-1}}}
(القيمة المطلقة في التعبير ضرورية حيث أن جداء قاطع التمام وظل التمام في مجال y يكون دائمًا غير سالب، بينما العبارة
x
2
−
1
{\displaystyle {\sqrt {x^{2}-1}}}
دائمًا غير سالبة بتعريف الجذر التربيعي الرئيسي، لذلك يجب أن يكون العامل المتبقي غير سالب، والذي يتحقق باستخدام القيمة المطلقة لـ x.)
d
y
d
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}}
باستخدام قاعدة السلسلة
عدل
بدلاً من ذلك، يمكن اشتقاق دالة قاطع التمام العكسية من مشتق دالة الجيب العكسية باستخدام قاعدة السلسلة .
لتكن
y
=
arccsc
x
=
arcsin
(
1
x
)
{\displaystyle y=\operatorname {arccsc} x=\arcsin \left({\frac {1}{x}}\right)}
حيث
|
x
|
≥
1
{\displaystyle |x|\geq 1}
و
y
∈
[
−
π
2
,
0
)
∪
(
0
,
π
2
]
{\displaystyle y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}
وبعد ذلك، بتطبيق قاعدة السلسلة على
arcsin
(
1
x
)
{\displaystyle \arcsin \left({\frac {1}{x}}\right)}
:
d
y
d
x
=
1
1
−
(
1
x
)
2
⋅
(
−
1
x
2
)
=
−
1
x
2
1
−
1
x
2
=
−
1
x
2
x
2
−
1
x
2
=
−
1
x
2
x
2
−
1
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)=-{\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}=-{\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}=-{\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}