معادلة رامانجان-ناغل

في الرياضيات، و تحديدًا في نظرية الأعداد، معادلة رامانجان-ناغل (بالإنجليزية: Ramanujan–Nagell equation)‏ هي معادلة بين مربع كامل و عدد أصغر من قوة العدد اثنين بسبعة.[1] و هي مثال لمعادلة ديفونتية أسية، معادلة للحل بأعداد صحيحة حيث يظهر أحد المتغيرات كأُس. سميت باسم سرينفاسا رامانجان، الذي حدس أن لها خمسة حلول صحيحة فقط، و ترجف ناغل، الذي أثبت الحدسية.

المعادلة والحل

عدل

المعادلة هي

 

أعداد ميرسين المثلثية

عدل

مشكلة العثور على جميع الأعداد على الشكل 2b − 1 (أعداد ميرسين) التي هي مثلثية مكافئة ل:

 

قيم b في هذه المعادلة هي ذاتها قيم n-3 في معادلة رامانجان-ناغل، وأعداد ميرسين المثلثية المناسبة (تسمى أيضًا أعداد رامانجان-ناغل) هي:

 

مراجع

عدل
  1. ^ "معلومات عن معادلة رامانجان-ناغل على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2019-03-31.

وصلات خارجية

عدل