مسلمة بيرتراند
في نظرية الأعداد، مُسَلمة بيرتراند (بالإنجليزية: Bertrand's postulate) هي حاليا مبرهنة تنص على أنه إذا كان عددا صحيحا أكبر قطعا من 3، فإنه يوجد على الأقل عدد أولي حيث :
يمكن الإستنتاج من هذه المبرهنة أن :
يمكن أن يُعبر عن مبرهنة تشيبيشيف باستعمال الدالة المعدة للأعداد الأولية .
- ، كلما توفر .
التاريخ
عدلحَدس هذه الحدسيةَ لأول مرة عالمُ الرياضيات الفرنسي جوزيف بيرتراند (1822-1900) [1][2] في عام 1845. كان ذلك في دراسةٍ له حول زمر التبديلات، وبعد أن تحقق من صحتها إلى حدود ستة ملايين.
بَرهن على هذه الحدسية بشكل كامل بافنوتي تشيبيشيف، عام 1850، بعد أن استعمل تقريب ستيرلينغ الذي يمكن من الاقتراب من دالة العاملي.
مبرهنة الأعداد الأولية
عدلانظر إلى مبرهنة الأعداد الأولية.
البرهان
عدللتكن الدالة المعرفة كما يلي:
- .
البحث عن قيمة أكبر من θ(x)
عدلمهما يكن أكبر من أو يساوي الواحد، لدينا .
يُبرهن على هذه المسألة باستعمال الاستقراء الرياضي.
تعميمات
عدلفي عام 1919، استعمل رامانجن (1897-1920) خصائص دالة غاما من أجل إعطاء برهان أبسط. انظر إلى عدد رامانجن الأولي.
أنظر أيضا
عدلمراجع
عدل- ^ "معلومات عن مسلمة بيرتراند على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2021-04-23.
- ^ "معلومات عن مسلمة بيرتراند على موقع ncatlab.org". ncatlab.org. مؤرشف من postulate الأصل في 2021-05-12.
{{استشهاد ويب}}
: تحقق من قيمة|مسار=
(مساعدة)