مساحة الدائرة

في الهندسة الرياضية، تعرف المساحة الموجودة داخل دائرة ما بمساحة الدائرة، ويمكن حسابها باستخدام المعادلة الرياضية: πr². حيث يمثل r نصف قطر الدائرة، أما الحرف اليوناني π فيمثل النسبة الثابتة لمحيط أي دائرة إلى قطرها، ويساوي تقريبًا 3,14159.

أحد الأساليب لاشتقاق هذه الصيغة والتي تصورها أرخميدس في الأصل، يستلزم النظر إلى الدائرة باعتبارها نهاية سلسلة من المضلعات المنتظمة مع عدد متزايد من الجوانب. يمكن حساب مساحة المضلع المنتظم بضرب نصف محيطه في المسافة من مركزه إلى أضلاعه. ولأن التسلسل يميل إلى أن يشكل دائرة، فإن الصيغة المقابلة – أن المساحة تساوي نصف المحيط في نصف القطر – هي: A = 1/2 × 2πr × r تمثل مساحة الدائرة.

التسمية

عدل

على الرغم من أنه يشار إليها غالبًا باسم مساحة الدائرة في السياقات غير الرسمية، إلا أن مصطلح القرص يشير بدقة إلى المنطقة الداخلية للدائرة، في حين أن الدائرة مخصصة للحدود فقط، وهو منحنى ولا يغطي أي مساحة بحد ذاتها. ولذلك، فإن مساحة القرص هي العبارة الأكثر دقة للمنطقة المحاطة بدائرة.

تاريخ

عدل

تستخدم الرياضيات المعاصرة حساب التفاضل والتكامل ونظيره الأكثر تقدمًا، وهو التحليل الحقيقي، لتحديد مساحة القرص. ومع ذلك، تمت دراسة مساحة القرص من قبل اليونانيين القدماء. في القرن الخامس قبل الميلاد وجد إيودوكسوس من كنيدوس أن مساحة القرص تتناسب مع مربع نصف قطره.[1] استخدم أرخميدس في عمله "قياس الدائرة" أدوات الهندسة الإقليدية ليثبت أن المساحة داخل الدائرة تساوي مساحة المثلث القائم الذي قاعدته طول محيط الدائرة وارتفاعه يساوي نصف قطر الدائرة، ونظرًا لأن طول المحيط هو 2πr، ومساحة المثلث هي نصف القاعدة مضروبة في الارتفاع، فإن هذا الحساب يعطي المعادلة الرياضية (π r²) والتي تمكن من حساب مساحة لقرص. قبل أرخميدس، كان أبقراط الخيوسي أول من أثبت أن مساحة القرص تتناسب مع مربع قطره، كجزء من عمله على تربيع هلال أبقراط،[2] لكنه لم يحدد ثابت التناسب.

استعمال متعددي الأضلاع

عدل

مساحة مضلع منتظم تساوي نصف محيطه مضروبا في المسافة الفاصلة بين مركز المضلع وأحدٍ من أضلاعه. كلما كبُر عدد أضلاع مضلع منتظم، كلما اقترب المضلع المنتظم من الدائرة التي تضمه، وكلما اقتربت هذه المسافة من شعاع الدائرة. هذا الأمر يؤكد أن مساحة القرص تساوي نصف محيط الدائرة مضروبا في شعاعها.

برهان أرخميدس

عدل

ليس أكبر من

عدل
 
دائرة ومربع وثماني أضلاع. الدائرة محيطة بهما مبينة الفرق في المساحة باللون الأصفر.

انظر إلى دائرة محيطة.

 

ليس أصغر من

عدل
 
دائرة ومربع وثماني أضلاع. الدائرة محاطة بهما مبينة الفرق في المساحة باللون الأصفر.
 

براهين عصرية

عدل

برهان البصلة

عدل
 
مساحة القرص بواسطة تكامل الحلقات

انظر بصل.

 

طريقة المثلث

عدل
 
نشرت الدائرة من أجل تكوين مثلث.
 
الصيغة المستعملة من أجل حساب مساحة المثلث.
 

طريقة نصف الدائرة

عدل
 
نصف دائرة شعاعها r

باستعمال تعريف التكامل ذاته، يمكن أن يُستنتج أن مساحة نصف الدائرة تساوي

 

باستعمال تعويض مثلثي يتمثل في وضع  ، نجد أن  

 
 
 

تقريب سريع

عدل

الاشتقاق

عدل

التقريب بالرمي بالنبال

عدل
 
تحديد مساحة الدائرة باستعمال طريقة تكامل مونت كارلو. التقدير ب 900 عينة يعطي 4×709900 = 3.15111...

انظر طريقة مونت كارلو.

تعميمات

عدل

مراجع

عدل
  1. ^ Stewart، James (2003). Single variable calculus early transcendentals (ط. 5th.). Toronto ON: Brook/Cole. ص. 3. ISBN:0-534-39330-6. However, by indirect reasoning, Eudoxus (fifth century B.C.) used exhaustion to prove the familiar formula for the area of a disk:  
  2. ^ Heath، Thomas L. (2003)، A Manual of Greek Mathematics، Courier Dover Publications، ص. 121–132، ISBN:0-486-43231-9، مؤرشف من الأصل في 2023-02-27.

وصلات خارجية

عدل