إذا كان n عددًا أوليًا ، فإن
Φ
n
(
x
)
=
1
+
x
+
x
2
+
⋯
+
x
n
−
1
=
∑
k
=
0
n
−
1
x
k
.
{\displaystyle \Phi _{n}(x)=1+x+x^{2}+\cdots +x^{n-1}=\sum _{k=0}^{n-1}x^{k}.}
إذا كان n = 2 p حيث p هو عدد أولي فردي، فإن
Φ
2
p
(
x
)
=
1
−
x
+
x
2
−
⋯
+
x
p
−
1
=
∑
k
=
0
p
−
1
(
−
x
)
k
.
{\displaystyle \Phi _{2p}(x)=1-x+x^{2}-\cdots +x^{p-1}=\sum _{k=0}^{p-1}(-x)^{k}.}
بالنسبة من n حتى 30، تكون كثيرات الحدود الدويرانية:[ 2]
Φ
1
(
x
)
=
x
−
1
Φ
2
(
x
)
=
x
+
1
Φ
3
(
x
)
=
x
2
+
x
+
1
Φ
4
(
x
)
=
x
2
+
1
Φ
5
(
x
)
=
x
4
+
x
3
+
x
2
+
x
+
1
Φ
6
(
x
)
=
x
2
−
x
+
1
Φ
7
(
x
)
=
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
8
(
x
)
=
x
4
+
1
Φ
9
(
x
)
=
x
6
+
x
3
+
1
Φ
10
(
x
)
=
x
4
−
x
3
+
x
2
−
x
+
1
Φ
11
(
x
)
=
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
12
(
x
)
=
x
4
−
x
2
+
1
Φ
13
(
x
)
=
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
14
(
x
)
=
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
15
(
x
)
=
x
8
−
x
7
+
x
5
−
x
4
+
x
3
−
x
+
1
Φ
16
(
x
)
=
x
8
+
1
Φ
17
(
x
)
=
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
18
(
x
)
=
x
6
−
x
3
+
1
Φ
19
(
x
)
=
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
20
(
x
)
=
x
8
−
x
6
+
x
4
−
x
2
+
1
Φ
21
(
x
)
=
x
12
−
x
11
+
x
9
−
x
8
+
x
6
−
x
4
+
x
3
−
x
+
1
Φ
22
(
x
)
=
x
10
−
x
9
+
x
8
−
x
7
+
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
23
(
x
)
=
x
22
+
x
21
+
x
20
+
x
19
+
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
24
(
x
)
=
x
8
−
x
4
+
1
Φ
25
(
x
)
=
x
20
+
x
15
+
x
10
+
x
5
+
1
Φ
26
(
x
)
=
x
12
−
x
11
+
x
10
−
x
9
+
x
8
−
x
7
+
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
27
(
x
)
=
x
18
+
x
9
+
1
Φ
28
(
x
)
=
x
12
−
x
10
+
x
8
−
x
6
+
x
4
−
x
2
+
1
Φ
29
(
x
)
=
x
28
+
x
27
+
x
26
+
x
25
+
x
24
+
x
23
+
x
22
+
x
21
+
x
20
+
x
19
+
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
30
(
x
)
=
x
8
+
x
7
−
x
5
−
x
4
−
x
3
+
x
+
1.
{\displaystyle {\begin{aligned}\Phi _{1}(x)&=x-1\\\Phi _{2}(x)&=x+1\\\Phi _{3}(x)&=x^{2}+x+1\\\Phi _{4}(x)&=x^{2}+1\\\Phi _{5}(x)&=x^{4}+x^{3}+x^{2}+x+1\\\Phi _{6}(x)&=x^{2}-x+1\\\Phi _{7}(x)&=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{8}(x)&=x^{4}+1\\\Phi _{9}(x)&=x^{6}+x^{3}+1\\\Phi _{10}(x)&=x^{4}-x^{3}+x^{2}-x+1\\\Phi _{11}(x)&=x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{12}(x)&=x^{4}-x^{2}+1\\\Phi _{13}(x)&=x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{14}(x)&=x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\\\Phi _{15}(x)&=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1\\\Phi _{16}(x)&=x^{8}+1\\\Phi _{17}(x)&=x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{18}(x)&=x^{6}-x^{3}+1\\\Phi _{19}(x)&=x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{20}(x)&=x^{8}-x^{6}+x^{4}-x^{2}+1\\\Phi _{21}(x)&=x^{12}-x^{11}+x^{9}-x^{8}+x^{6}-x^{4}+x^{3}-x+1\\\Phi _{22}(x)&=x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\\\Phi _{23}(x)&=x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}\\&\qquad \quad +x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{24}(x)&=x^{8}-x^{4}+1\\\Phi _{25}(x)&=x^{20}+x^{15}+x^{10}+x^{5}+1\\\Phi _{26}(x)&=x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\\\Phi _{27}(x)&=x^{18}+x^{9}+1\\\Phi _{28}(x)&=x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1\\\Phi _{29}(x)&=x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}\\&\qquad \quad +x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\\Phi _{30}(x)&=x^{8}+x^{7}-x^{5}-x^{4}-x^{3}+x+1.\end{aligned}}}
حالة متعددة الحدود الدويرانية من الدرجة 105 مثيرة للاهتمام لأن 105 هي أقل عدد صحيح موجب الذي هو حاصل ضرب ثلاثة أعداد أولية فردية متمايزة (3 * 5 * 7) وهذه كثيرة الحدود هي الأولى التي لها معامل غير 1 ، 0 ، أو −1:
Φ
105
(
x
)
=
x
48
+
x
47
+
x
46
−
x
43
−
x
42
−
2
x
41
−
x
40
−
x
39
+
x
36
+
x
35
+
x
34
+
x
33
+
x
32
+
x
31
−
x
28
−
x
26
−
x
24
−
x
22
−
x
20
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
−
x
9
−
x
8
−
2
x
7
−
x
6
−
x
5
+
x
2
+
x
+
1.
{\displaystyle {\begin{aligned}\Phi _{105}(x)&=x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2x^{41}-x^{40}-x^{39}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}\\&\qquad \quad -x^{24}-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^{9}-x^{8}-2x^{7}-x^{6}-x^{5}+x^{2}+x+1.\end{aligned}}}