متسلسلة ماكلورين
حالة خاصة من متسلسلة تايلور عندما يكون a يساوي الصفر
إذا كانت في متسلسلة تايلور، يمكن الحصول على متسلسلة أبسط للنشر بقرب الصفر وهي متسلسلة ماكلورين. سميت السلسلة على اسم عالم الرياضيات الإسكتلندي كولين ماكلورين.[1]
تعريف
عدلإذا كانت الدالة الرياضية قابلة للاشتقاق مرة في النقطة فإنه يمكن كتابتها كما يلي:[2]
إذا عوضت بلانهاية فإنه يُحصل على متسلسلة لا منتهية هي بذاتها الدالة أي أن الجزء يصير صفرا والمتسلسلة تساوي الدالة في كل النقاط :[2][3]
أو
إذا كانت في هذه المتسلسلة يمكن الحصول على متسلسلة أبسط للنشر بقرب الصفر وهي متسلسلة ماكلورين:[4]
أمثلة
عدلوصلات داخلية
عدلمراجع
عدل- ^ I. Bronstein, K. Semendjajew et al.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am Main 2005, ISBN 3-8171-2006-0, S. 434.
- ^ ا ب Rudin, Walter (1980), Real and Complex Analysis (بالإنجليزية), New Dehli: McGraw-Hill, p. 418, Exercise 13, ISBN:0-07-099557-5
- ^ Hille, Einar; Phillips, Ralph S. (1957), Functional analysis and semi-groups, AMS Colloquium Publications (بالإنجليزية), American Mathematical Society, vol. 31, pp. 300–327.
- ^ Weisstein, Eric W. "Maclaurin Series". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2020-11-30. Retrieved 2020-11-30.