مبرهنة النمطية

في الرياضيات، مبرهنة النمطية (بالإنجليزية: Modularity theorem)‏ (كانت تسمى فيما قبل حدسية تانياما-شيمورا-فايل وأسماء أخرى)، تنص على أن المنحنيات الإهليلجية عبر حقل الأعداد الجذرية ترتبط بأشكال نمطية.[1][2]

النص

عدل

تنص المبرهنة على أن أي منحنى إهليلجي معرف على Q يمكن أن يُحصل عليه من خلال تطبيق جذري بمعاملات صحيحة ينطلق من منحنى نمطي كلاسيكي

 

بالنسبة لعدد صحيح N ما.

انظر إلى دالة مولدة وإلى متسلسلة فورييه.

التاريخ

عدل

انظر إلى يوتاكا تانياما وإلى غورو شيمورا.

جذبت هده الحدسية الكثير من الاهتمام عندما بين جيرار فراي في عام 1986 أن حدسية تانياما-شيمورا-فايل تعني مبرهنة فيرما الأخيرة.

مراجع

عدل
  1. ^ "معلومات عن مبرهنة النمطية على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2019-08-14.
  2. ^ "معلومات عن مبرهنة النمطية على موقع universalis.fr". universalis.fr. مؤرشف من الأصل في 2015-12-22.