عدد تخيلي
العدد التخيلي[1] (بالإنجليزية: Imaginary number) هو عدد مركب يمكن أن يكتب على شكل جداء عدد حقيقي من جهة والوحدة التخيلية من جهة ثانية.[2][3][4] وبتعبير آخر، هو أي عدد سالب داخل الجذور ذات الدليل الزوجي. يُرمز للوحدة التخيلية بـت في العربية وi في الإنجليزية وتساوي الوحدة التخيلية الجذر التربيعي لسالب واحد.
عدد تخيلي
صنف فرعي من | |
---|---|
جزء من | |
تعريف الصيغة | |
الرموز في الصيغة | |
ممثلة بـ | |
لديه جزء أو أجزاء | |
النقيض |
انظر أيضا
عدلمراجع
عدل- ^ موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 336، OCLC:1369254291، QID:Q108593221
- ^ Nahin، Paul J. (2010). An Imaginary Tale: The Story of "i" [the square root of minus one]. Princeton University Press. ص. 12. ISBN:978-1-4008-3029-9. مؤرشف من الأصل في 2019-07-05.
- ^ From page 380:"Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousjours en imaginer autant que jay dit en chasque Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a celles qu'on imagine, comme encore qu'on en puisse imaginer trois en celle cy, x3 – 6xx + 13x – 10 = 0, il n'y en a toutefois qu'une reelle, qui est 2, & pour les deux autres, quoy qu'on les augmente, ou diminue, ou multiplie en la façon que je viens d'expliquer, on ne sçauroit les rendre autres qu'imaginaires." (Moreover, the true roots as well as the false [roots] are not always real; but sometimes only imaginary [quantities]; that is to say, one can always imagine as many of them in each equation as I said; but there is sometimes no quantity that corresponds to what one imagines, just as although one can imagine three of them in this [equation], x3 – 6xx + 13x – 10 = 0, only one of them however is real, which is 2, and regarding the other two, although one increase, or decrease, or multiply them in the manner that I just explained, one would not be able to make them other than imaginary [quantities].) نسخة محفوظة 08 أغسطس 2018 على موقع واي باك مشين.
- ^ Hargittai، István (1992). Fivefold symmetry (ط. 2nd). World Scientific. ص. 153. ISBN:981-02-0600-3. مؤرشف من الأصل في 2014-01-03.