انظر إلى متوسط هندسي.
التقريب بالكسور المتتابعة
عدل
العدد يكتب على الشكل
عدل
إذا وجد عددان بحيث
انظر إلى هيرو السكندري وإلى طريقة نيوتن.
أولا : نختار قيمة للعدد (من الأحسن إختاره حيث بالقريب إلى الوحدة حيث S هو العدد الذي نريد حساب جذره التربيعي)
ثانيا : نحسب الأعداد الحدود المتتالية للمتتالية و نتوقف عند العدد حيث
لحساب , حيث S = 125348,
-
-
-
-
-
-
هكذا,
لحساب , حيث S = 27,
-
-
-
-
هكذا,
طريقة القيمتين الدنيا والقصوى
عدل
تمكن من حساب قيمة تقريبية لجذر مربع عدد ما.
- يقسم العدد من اليمين إلى اليسار، إلى زمر من رقمين:مثلا 11878 يصبح 78 18 1.
- نبحث عن الجذر القريب للزمرة الأولى أقصى اليسار:هنا 1 والجذر هو 1.
- نحسب الباقي الزمرة ناقص مربع العدد:هنا نجد 0.
- ننزل الزمرة الموالية إلى جانب الباقي:هنا نحصل على 18 أي 018
- نضاعف الجذر الجزئي المحصل عليه حاليا:هنا 2.
- نحدف رقم الوحدات للعدد المحصل عليه في 4:نحصل على 1.
- نقسم العدد المحصل عليه في 6، على العدد المحصل عليه في 5، والعدد المحصل عليه سيكون هو الرقم الموالي للجذر:هنا 1 على 2 تساوي 0.
- نضع الرقم المحصل عليه في 7 على يمين العدد المحصل عليه في 5:هنا نجد 20
- نضرب العدد المحصل عليه في 8، في العدد المحصل عليه في 7:هنا نجد 20 في 0 يساوي 0.
- نطرح من العدد المحصل عليه في 4، العدد المحصل عليه في 9:هنا نجد 18 وفي حالة الحصول على عدد سالب نطرح واحد من العدد المحصل عليه في 7 ونستأنف العملية.
- ننزل الزمرة الموالية إلى جانب الباقي المحصل عليه في 10:هنا نجد 1878
- نعيد العمليات انطلاقا من المرحلة 5.