رباعي توافقي
في الهندسة الإقليدية، الرباعي التوافقي (بالإنجليزية: Harmonic quadrilateral) هو مضلعٌ رباعيٌّ تُوجدُ دائرةٌ تمرُّ بجميعِ رؤوسهِ بحيث جداء كل طولَيْ ضلعَيْه المتقابلين متساوٍ.[1]
الخواص
عدلإذا كانَ رباعياً توافقياً، و نقطة منتصف ضلعه القطري ، فإنَّ:
النسب التبادلية
عدلالنسبة التبادلية (بالإنجليزية: Cross-ratio) هي نسبةٌ مُرتبطةٌ بأربعِ نقاطٍ مُتسامتة. إذا كانت النقاط على استقامةٍ واحدةٍ، فإنَّ نسبتهم التبادلية تُعرّف كالآتي:[2] تُعرّفُ النقطة على أنّها المرافق التوافقي للنقطة بالنسبة لـ و . إذا كانت النسبة التوافقية للنقاط الأربع تساوي . وتُسمَّى حينئذٍ نسبةً توافقية. ونتيجةً لذلك، فإنَّ النسبة التبادلية بالإمكان اعتبارها على أنها مدى بُعدِ الأربع نقاط عن النسبة التوافقية.[2] النسبة التبادلية مُعرّفة منذ القِدَم، حيث يرجّح أن إقليدس هو أوّل من ذكرها، كما استعملها ببس الرومي الذي لاحظ خاصيّة ثباتها تحت التحويلات الخطية. فالنسبة التبادلية لأيِّ قطعةٍ مُستقيمةٍ تقطع 4 مستقيمات متلاقية هي ثابتة. بشكلٍ مُكافئ، يُعرّفُ ذلكَ في الهندسة الإسقاطية على أنَّ النسبة التبادلية ثابتةٌ تحت أي تحويلٍ خطيٍ كسريٍ.[2] في تعريفِ أبولونيوس للدائرة، تُسمَّى الخطوط «حُزمة توافقية» وهي كل مجموعة خطوط متلاقية نسبتها توافقية (أي: نسبتها التبادلية تساوي ). إنَّ تقاطعَ حُزمةٍ توافقيةٍ مع الدائرة يُنتجُ رباعياً توافقياً.[3]
انظر أيضًا
عدلمراجع
عدل- ^ Johnson، Roger A. (2007) [1929]، Advanced Euclidean Geometry، Dover، ص. 100، ISBN:978-0-486-46237-0
- ^ ا ب ج Complex analysis : an introduction to the theory of analytic functions of one complex variable (ط. 3d ed). New York: McGraw-Hill. 1979. ISBN:0-07-000657-1. OCLC:4036464. مؤرشف من الأصل في 2020-03-13.
{{استشهاد بكتاب}}
:|طبعة=
يحتوي على نص زائد (مساعدة) - ^ The Associated Harmonic Quadrilateral, Paris Pamfilos, Forum Geometricorum, Volume 14 (2014) 15–29.