دالة متعددة المتغيرات الحقيقية

دالة ذات أكثر من مدخل واحد، حيث ان جميع المداخل متغيرات حقيقية

في التحليل الرياضي، دالة ذات عدة متغيرات هي دالة نطاقها مجموعة جزئية من حيث n>1
.[1] حيث تمثل الدالة في فضاء ثلاثي الأبعاد بحيث يكون الإحداثي العمودي للنقطة هو قيمة الدالة عند العنصر الممثل بالاحداثين الأولين، وهذا التمثيل يسمى «السطح الممثل للدالة». مجموعة التعريف لدالة ذات n متغير، هي مجموعة مشتقة من و مدى هذه الدالة هي مجموعة مشتقة من بعض الدوال تكون معرفة لجميع الأعداد الحقيقية ، ولكن البعض الآخر تكون معرفة لمجموعة مشتقة من

n = 1
n = 2
n = 3
الدوال f(x1, x2, ..., xn) لـ n متغير، مرسومة كرسومات بيانية في الفضاء n + 1. المجالات هي المناطق n-الأبعاد الحمراء، والصور هي منحنيات n-الأبعاد ذات اللون الأرجواني.

تعريف السطح الممثل لدالة

عدل

لتكن   حيث A مجموعة جزئية من  ، السطح الممثل للدالة f هو مجموعة النقاط.

 

وبالمثل إذا كانت   حيث A مجموعة جزئية من   فإن مجموعة النقاط

 

تسمى التمثيل البياني للدالة.

تعريف نهاية دالة في متغيرين

عدل

انظر أيضا

عدل

مراجع

عدل
  1. ^ "معلومات عن دالة متعددة المتغيرات الحقيقية على موقع id.loc.gov". id.loc.gov. مؤرشف من الأصل في 2020-10-26.

وصلات خارجية

عدل