بوابة:رياضيات/مقالة مختارة/أرشيف



أرشيف مقالة مختارة








أرشيف

1

 ع - ن - ت  

نظرية الشواش ( Chaos Theory ) من أحدث النظريات الرياضية الفيزيائية - وتترجم أحيانا بنظرية الفوضى أو العماء- التي تتعامل مع موضوع الجمل المتحركة (الديناميكية) اللاخطية التي تبدي نوعا من السلوك العشوائي يعرف بالشواش, وينتج هذا السلوك العشوائي إما عن طريق عدم القدرة على تحديد الشروط البدئية (تأثير الفراشة Butterfly Effect) أو عن طريق الطبيعة الفيزيائية الاحتمالية لميكانيك الكم.

تحاول نظرية الشواش أن تستكشف النظام الخفي المضمر في هذه العشوائية الظاهرة محاولة وضع قواعد لدراسة مثل هذه النظم مثل الموائع والتنبؤات الجوية والنظام الشمسي واقتصاد السوق وحركة اللأسهم المالية والتزايد السكاني.

تاريخيا، دراسة ظواهر الفوضى ظهرت ابتدأ من معضلة الأجسام الثلاث، وهي مشكلة ديناميكية الفيزياء الرياضية المطبقة على الميكانيكا السماوية، التي واجهها في المقام الأول علماء رياضيات مثل جوزيف لوي لاغرانج وهنري بوانكاريه.

2

 ع - ن - ت  

إسقاط الخرائط هو أي طريقة تستخدم في علم رسم الخرائط (كارتوغرافيا)من أجل إظهار السطح المنحني ثنائي البعد للأرض بشكل مستوي.

إن كلمة إسقاط تعني أي عمل موجود على سطح الأرض وله قيم على المستوي وليس بالضرورة أن يكون إسقاط هندسي. الخرائط المسطحة لا يمكن أن تظهر بدون عملية الإسقاط، إن الخرائط المسطحة قد تكون أكثر فائدة من الكروية *الإسقاط على الكرة الأرضية في كثير من الحالات

  • تكون أصغر وإمكانية تخزينها أسهل:
  • يمكنها أن تتوافق مع مساحة كبيرة من المقاييس
  • إمكانية إظهارها على شاشة الكمبيوتر أسهل
من أجل تسهيل الدراسة عادة يتم افتراض أن السهل الذي يتم اسقاطه هو عبارة عن سطح كروي، بينما في الواقع يكون الشكل الأنسب لتمثيل الكرة الأرضية هو سطح كروي مفلطح، وهناك العديد من الأجسام السماوية ذات الأشكال الغير منتظمة. ولذلك وبشكل عام فإن إسقاط الخرائط يطلق على طريقة الإسقاط المستوي لسطوح الأجسام الفلكية إلى مستوي.

3

 ع - ن - ت  

نظرية الألعاب هي تحليل رياضي لحالات تضارب المصالح بغرض الإشارة إلى أفضل الخيارات الممكنة لاتخاذ قرارات في ظل الظروف المعطاة تؤدي إلى الحصول على النتيجة المرغوبة.

بالرغم من ارتباط نظرية الألعاب بالتسالي المعروفة كلعبة الداما, إكس أو, و البوكر, إلا أنها تخوض في معضلات أكثر جدية تتعلق بـ علم الاجتماع, و الاقتصاد, و السياسة, بالإضافة إلى العلوم العسكرية. إن القالب العام لنظرية الألعاب تم وضعه على يد عالم الرياضيات الفرنسي Emile Borel إيمل بورل، الذي كتب أكثر من مقالة عن ألعاب الصدفة, ووضع منهجيات للعب, هذا ويعد أبو نظرية الألعاب الحقيقي هو عالم الرياضيات الهنغاري-الأمريكي جون فون نيومان, الذي أسس عبر سلسلة من المقالات أمتدت على مدى عشر سنوات (1920-1930)، الإطار الرياضي لأي تطوير على النظريات الفرعية. خلال الحرب العالمية الثانية, كانت معظم الخطط العسكرية ضمن مجال نقل الجنود وإيوائهم الدعم اللوجيستي ومجال الغواصات, و الدفاع الجوي, مرتبطة بشكل مباشر مع نظرية الألعاب.

بعد ذلك تطورت نظرية الألعاب كثيراً في بيئة علم الاجتماع, ومع ذلك تعتبر نظرية الألعاب نتاج جوهري من علم الرياضيات.

4

 ع - ن - ت  

تدرس الهندسة الكسيرية أو الهندسة الفركتلية (بالإنجليزية: Fractal Geometry)‏ البنى الهندسية المؤلفة من (كسيريات) وهو مجموع كسيرية Fractals التي يمكن تعريفها بأنه جزء هندسي صغير جدا غير منتظم ذو أبعاد لامتناهية بالصغر، يمكن أن يتألف من أجزاء متشابهة مؤلفة بدورها من أجزاء متشابهة مشابهة للجزء الأم.

الكسيرية إذا يمكن تعريفها على أنها كائن هندسي خشن غير منتظم على كافة المستويات، ويمكن تمثيلها بعملية كسر شيء ما إلى أجزاء أصغر لكن هذه الأجزاء تشابه الجسم الأصلي. تحمل الكسيرية في طياتها ملامح مفهوم اللانهاية وتتميز بخاصية التشابه الذاتي أي أن مكوناتها مشابهة للكسيرية الأم مهما كانت درجة التكبير.

غالبا ما يتم تشكيل الأجسام الكسيرية عن طريق عمليات أو خوارزميات متكررة: مثل العمليات التراجعية recursive أو التكراريةiterative.

5

 ع - ن - ت  

الهندسة الرياضية (باليونانية: γεωμετρία) هي فرع من فروع الرياضيات المعنية بدراسة الأشكال، وقياس الحجوم والمساحات، ودراسة هندسة الفضاء. ويسمى من يدرس في مجال هذا العلم مهندساً رياضياً. ولقد نشأ هذا العلم في الحضارات القديمة باعتباره مجموعة من العلوم العملية حول الأطوال، والمساحات, والحجوم، على يد مجموعة من العلماء الغربيين القدامى مثل طاليس (القرن السادس قبل الميلاد). وبحلول القرن الثالث قبل الميلاد وضع إقليدس المسلمات الأساسية في علم الهندسة الرياضية، حيث أصبحت الهندسة الإقليدية معياراً لقرون طويلة. وبعدها طور أرخميدس تقنيات بارعة في حساب المساحات والحجوم، بطرق كثيرة مثل التكامل. وأصبح علم الفلك، وخاصة تحديد مواقع النجوم والكواكب في السماء ووصف العلاقات بين حركة الكواكب، أحد أهم مجالات التساؤلات الهندسية خلال الألفية ونصف الألفية التاليين.

6

 ع - ن - ت  

حساب التفاضل والتكامل أو الحسبان (باللاتينية: Calculus) فرع من فروع الرياضيات يدرس النهايات والاشتقاق والتكامل والمتسلسلات اللانهائية، وهو علم يستخدم لدراسة التغير في الدوال وتحليلها.

ويدخل علم التفاضل والتكامل في العديد من التطبيقات في الهندسة والعلوم المختلفة حيث كثيراً ما يحتاج لدراسة سلوك الدالة والتغير فيها وحل المشاكل التي يعجز علم الجبر عن حلها بسهولة،وعادة مايدرس علم التفاضل والتكامل بعد دراسة أساسيات الجبر والهندسة وحساب المثلثات، ومن الموضوعات الرئيسية في هذا العلم هي النهايات والكميات الموحلة في الصغر.

و ينقسم هذا العلم إلى فرعين هما التفاضل والتكامل ويربط بينهما ما يعرف بالنظرية الأساسية للتفاضل والتكامل. وفى بعض الأحيان قد يستخدم الاسم تفاضل وتكامل في الإشارة إلى أي نظام يستخدم في الحسبان ويستخدم فيه الرموز في التعامل مع المصطلحات والمتغيرات المختلفة مثل تفاضل وتكامل لامبدا والتفاضل والتكامل الاقتراحي والتفاضل والتكامل العلائقي والتفاضل والتكامل المؤكد.

7

 ع - ن - ت  

الطوبولوجيا (بالإنجليزية: Topology)‏ أو علم الفراغ أو علم المكان كلمة يونانية (من topos وتعني مكان وlogos تعني دراسة) هي دراسة المجموعات المتغيرة التي لا تتغير طبيعة محتوياتها. مما دفع بعض علماء الرياضيات والهندسة إلى تسميتها الهندسة المطاطية.

تهتم الطوبولوجيا بدراسة الخصائص المكانية المنحفظة وفق التشوهات ثنائية الاستمرار (الشد دون التمزيق)، هذه الخصائص تعرف عادة باللامتباينات الطوبولوجية، تأسس هذا الفرع من الرياضيات في بدايات القرن العشرين آخذا في تطوره من عام 1925 إلى 1975 حيث شهد نضوجه وتشكله اختصاصا متكاملا.

يمكن القول على سبيل التبسيط أن هذا العلم يهتم بالخصائص الرياضية التي لا تتأثر عند التحول من فضاء رياضي إلى آخر. كذلك يمكن القول أن الطوبولوجيا هو العلم الذي يهتم بدراسة الخصائص الطوبولوجية التي تنتقل من فراغ إلى فراغ آخر بواسطة التشاكل.

لفهم معنى كلمة التشاكل فإنه يقال عن دالة ما أنها تشكل تشاكلا إذا كانت دالة مستمرة والصورة العكسية لها أيضاً مستمرة وشاملة ومتباينة.

8

 ع - ن - ت  

نظرية الاحتمال (بالإنجليزية: Probability theory)‏ هي النظرية التي تدرس احتمال الحوادث العشوائية. فالبنسبة للرياضيين، الاحتمالات أعداد محصورة في المجال بين 0 و 1 تحدد احتمال حصول أو عدم حصول حدث معين عشوائي أي غير مؤكد.

يتم تحديد احتمال الحدث بالقيمة حسب بدهيات الاحتمال.

كما ندعو احتمال الحدث علما بحدوث الحدث  : الاحتمال الشرطي للحدث مع العلم بحدوث . نمثل هذا الاحتمال الشرطي بالنسبة بين احتمال التقاطع بين الحدثين (أي حدوثهما معا) إلى احتمال حدوث الحدث ، أي . إذا لم تتغير قيمة الاحتمال الشرطي للحدث علما بوقوع عن القيمة الأصلية غير الشرطية للحدث أي أن الاحتمال واحد في حال وقوع أو عدم وقوعه عندئذ نقول أن هذين الحدثين مستقلين.

تناقش نظرية الاحتمالات مصطلحين غاية في الأهمية : المتغير العشوائي والتوزيع الاحتمالي للمتغير العشوائي.

9

 ع - ن - ت  

تاريخ الرياضيات كان الكتبة البابليون منذ ثلاث آلاف سنة يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية في بابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من ستين رمزا للدلالة علي الأعداد من تسع وخمسين.

وما زال النظام الستيني متبعا حتي الآن في قياس الزوايا في حساب المثلثات وقياس الزمن (الساعة تساوي ستين دقيقة والدقيقة تساوي ستين ثانية). وطور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري، وهو العد بالآحاد والعشرات والمئات. ولكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 500 بوضع خمسة رموز يعبر كل رمز على مائة.

وأول العلوم الرياضية التي ظهرت قديما كانت الهندسة لقياس مساحة الأرض، وحساب المثلثات لقياس الزوايا والميل في البناء. وكان البابليون يستعملونه في التنبؤ بمواعيد كسوف الشمس وخسوف القمر. وهذه المواعيد كانت مرتبطة بعباداتهم. وكان قدماء المصريين يستخدمونه في بناء المعابد وتحديد زوايا الأهرامات. وكانوا يستخدمون الكسور وتحديد مساحة الدائرة بالتقريب.

10

 ع - ن - ت  

الرياضيات المتقطعة (بالإنجليزية: Discrete mathematics) أو تدعى أيضا الرياضيات المتناهية أو الرياضيات المحددة (finite mathematics)، هي دراسة البنى الرياضية التي تكون متقطعة أساسا، بمعنى أنها لا تستدعي وجود صفة الاتصال ولا تتطلبه لكي تدرس هذا الموضوع.

معظم الموضوعات التي تدرسها الرياضيات المتقطعة ترتبط بمجموعات عدودة (قابلة للعد) countable sets (و هو مفهوم مغاير تماما لمفهوم المجموعات المنتهية)، أحد أمثلته : مجموعة الأعداد الصحيحة integers.

إن المواضيع التي تتم دراستها في الرياضيات المتقطعة هي إما أن تكون محددة أو غير محددة. وتُستعمل مصطلح الرياضيات المحددة في بعض الأحيان للإشارة إلى حقول الرياضيات المتقطعة التي تتعامل مع المجموعات المحددة، وخصوصاً في المجالات التي لها صلة بقطاع الأعمال.

اكتسبت الرياضيات المتقطعة شعبية واسعة خلال العقود الأخيرة بسبب تطبيقاتها الواسعة في علوم الحاسوب. فمصطلحات وترميزات الرياضيات المتقطعة مفيدة لدراسة والتعبير عن مسائل الأغراض objects في البرمجة الحاسوبية والخوارزميات. بعض فروع الرياضيات المتقطعة تفيد أيضاً في دراسة بعض مسائل الأعمال والاقتصاد.

11

 ع - ن - ت  

الرياضيات التطبيقية هي تطبيق الأساليب الرياضية في مجالات مختلفة مثل العلوم والهندسة والأعمال وعلوم الحاسوب والصناعة. الرياضيات التطبيقية هي مزيج من العلوم الرياضية والمعرفة المتخصصة. يصف مصطلح «الرياضيات التطبيقية» أيضًا التخصص المهني الذي يعمل فيه علماء الرياضيات على حل المشكلات العملية من خلال صياغة النماذج الرياضية ودراستها. في الماضي، حفزت التطبيقات العملية على تطوير نظريات رياضية، والتي أصبحت بعد ذلك موضوع الدراسة في الرياضيات البحتة حيث تتم دراسة المفاهيم المجردة من أجلها. يرتبط نشاط الرياضيات التطبيقية ارتباطًا وثيقًا بالبحث في الرياضيات البحتة.

12

 ع - ن - ت  

الجَبْر كلمة عربية وهو فرع من علم الرياضيات وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي (الكتاب المختصر في حساب الجبر والمقابلة) الذي قدم العمليات الجبرية التي تنظم إيجاد حلول للمعادلات الخطية والتربيعية.

ويشكل علم الجبر أحد الفروع الثلاثة الأساسية في الرياضيات إضافة إلى الهندسة الرياضية والتحليل الرياضي ونظرية الأعداد والتباديل والتوافيق. ويهتم هذا العلم بدراسة البنى الجبرية والتماثلات بينها، والعلاقات والكميات.

والجبر هو مفهوم أوسع وأشمل من الحساب أو الجبر الابتدائي. فهو لا يتعامل مع الأرقام فحسب، بل يصوغ التعاملات مع الرموز والمتغيرات والفئات كذلك. ويصوغ الجبر البدهيات والعلاقات التي بواسطتها يمكن تمثيل أي ظاهرة في الكون. ولذا يعتبر من الأساسيات المنظمة لطرق البرهان.

13

 ع - ن - ت  

الإحصاء (بالإنجليزية: Statistics)‏ هو أحد فروع الرياضيات الهامة ذات التطبيقات الواسعة. يهتم علم الإحصاء بجمع وتلخيص وتمثيل وايجاد استنتاجات من مجموعة البيانات المتوفرة، محاولا التغلب على مشاكل مثل عدم تجانس البيانات وتباعدها. كل هذا يجعله ذا أهمية تطبيقية واسعة في شتى مجالات العلوم من الفيزياء إلى العلوم الاجتماعية وحتى الإنسانية، كما يلعب دورا في السياسة والأعمال. يعتبر الإحصاء من الأمور القديمة المعروفة لدى المجتمعات، حيث يحرص القادة والزعماء والملوك على إحصاء عدد الجنود والأسلحة لخوض الحروب واستعراض القوة، كما تحرص الجماعات على إحصاء عدد أفرادها من أجل معرفة قوتها وكثرتها. وفي القرن التاسع عشر طورت أساليب وأفكار إحصائية على يد مجموعة من العلماء منهم فرانسيس يزدرو أيدجورث، وفرانسيس غالتون، وكارل بيرسون، وجورج أودني بول، وآخرون. وفي القرن العشرين تطور علم الإحصاء وعزز من ذلك حاجة صناع القرار والقادة العسكريون في الحرب العالمية الثانية للخطط الإحصائية والمزيد من الأفكار الإحصائية.

14

 ع - ن - ت  

علم التعمية أو علم التشفير (باللاتينية: Cryptographia) (بالإنجليزية: Cryptography)‏ هو علم وممارسة إخفاء البيانات؛ أي بوسائل تحويل البيانات (مثل الكتابة) من شكلها الطبيعي المفهوم لأي شخص إلى شكل غير مفهوم بحيث يتعذّر على من لا يملك معرفة سرية محددة معرفة فحواها. يحظى هذا العلم اليوم بمكانة مرموقة بين العلوم، إذ تنوعت تطبيقاته العملية لتشمل مجالات متعددة نذكر منها: المجالات الدبلوماسية والعسكرية، والأمنية، والتجارية، والاقتصادية، والإعلامية، والمصرفية والمعلوماتية. في شكلها المعاصر, التعمية علم من أفرع الرياضيات وعلوم الحوسبة.

في العصر الحديث, تعد آلة إنجما التي استخدمها الجيش الألماني في الحرب العالمية الثانية, أبرز مثال على استخدام التعمية لتحقيق تفوق على العدو في مجال الاتصالات، وكانت الأبحاث التي جرت بشكل منفصل في كل من المؤسستين العسكريتين الأمريكية والبريطانية في سبعينيات القرن العشرين فتحا جديدا فيما صار يعرف الآن بتقنيات التعمية القوية المعتمدة على الحوسبة، وارتبطت التعمية بعلوم الجبر ونظرية الأعداد ونظرية التعقيد ونظرية المعلوميات.

توسع نطاق تطبيقات التعمية كثيرا في العصر الحديث بعد تطور الاتصالات وحدوث ثورة الاتصالات بما تتطلبه أحيانا من استيثاق وحاجة إلى ضمان عدم التنصت ومنع التجسس والقرصنة الإلكترونيين وتأمين سبل التجارة الإلكترونية.

تعد تقنيات التوقيع الرقمي والتصويت الالكتروني والنقد الرقمي تطبيقات عملية معتمدة على التعمية.

15

 ع - ن - ت  

تتسم الفيزياء الرياضية، وهي فرع من الفيزياء، بالنزعة الرياضية غير المسبوقة في أي من العلوم الأخرى. تحاول الفيزياء إيجاد حلول رياضية لتفسير الظواهر الطبيعية وصياغتها في نظريات شاملة. والنظرية السليمة هي تلك النظرية التي لا تقتصر على تفسير ظاهرة معينة فقط بل يمتد تطبيقها إلى التنبؤ بنتائج لظواهر أخرى تتعلق بالظاهرة التي تم تفسيرها رياضياً. مثال على ذلك النظرية النسبية لأينشتاين حيث أشارت حساباته إلى حيود الضوء عند مروره بمجال جاذبية جرم سماوي كبير، إذ أنه طبقا للنظرية النسبية العامة تتسبب الجاذبية في انحناء الفضاء حول الجرم السماوي مما يعمل على حيود الضوء (أي أن ينحني شعاع الضوء عن مساره المستقيم) المار بهذا المجال ويغير اتجاهه.

16

 ع - ن - ت  

كان لعلماء المسلمين في عصر الحضارة الإسلامية مكانةٌ مرموقةٌ ومهمةٌ في علم الرياضيات، فقد أثروه وابتكروا فيه وأضافوا إليه وطوّروه، فاستفاد العالم أجمع من الإرث الذي تركوه. في بادئ الأمر، جمع العلماء المسلمون نتاج علماء الأمم السابقة في حقل الرياضيات، ثم ترجموه، ومنه انطلقوا في الاكتشاف والابتكار والإبداع، ويُعد المسلمون أول من اشتغل في علم الجبر من خلال الخوارزمي، وهم الذين أطلقوا عليه اسم "الجبر"، ونتيجة الاهتمام الذي أولوه إليه، فقد كانوا أول من ألَّف فيه بطريقة علمية منظمة. كما توسعوا في حساب المثلثات وبحوث النسبة التي قسموها إلى ثلاثة أقسام: عددية وهندسية وتأليفية، وحلّوا بعض المعادلات الخطية بطريقة حساب الخطأين، والمعادلات التربيعية، وأحلّوا الجيوب محل الأوتار، وجاءوا بنظريات أساسية جديدة لحل مثلثات الأضلاع، وربطوا علم الجبر بالأشكال الهندسية، وإليهم يرجع الفضل في وضع علم المثلثات بشكل علمي منظم مستقل عن علم الفلك، ما دفع الكثيرين إلى اعتباره علماً عربياً خالصاً.

17

 ع - ن - ت  

ميدالية فيلدز أو وسام فيلدز هي جائزة تُمنح لاثنين أو ثلاثة أو أربعة علماء رياضيات دون سن الأربعين في المؤتمر الدولي لعلماء الرياضيات للاتحاد الدولي للرياضيات (IMU)، وهو اجتماع يعقد كل أربع سنوات. تعتبر ميدالية فيلدز واحدة من أعلى درجات التكريم التي يمكن أن يحصل عليها عالم الرياضيات، وقد وُصفت بأنها جائزة نوبل في الرياضيات، على الرغم من وجود العديد من الاختلافات، بما في ذلك تواتر الجائزة، وعدد الجوائز، وحدود العمر. وفقًا لمسح التميز الأكاديمي السنوي الذي أجراه التصنيف الأكاديمي لجامعات العالم، يُنظر إلى ميدالية فيلدز باستمرار على أنها أعلى جائزة في مجال الرياضيات في جميع أنحاء العالم، وفي استطلاع سمعة آخر أجرته IREG في 2013-2014، جاءت ميدالية فيلدز عن قرب بعد جائزة أبيل كثاني أرقى جائزة دولية في الرياضيات.

18

 ع - ن - ت  

جائزة أبيل (بالإنجليزية: Abel Prize)‏ هي جائزة دولية تمنحها سنويًّا الجمعية الرياضياتية النرويجية لواحد أو اثنين من علماء الرياضيات وقد استمدت اسمها من اسم العالم النرويجي نيلز هنريك أبيل. تُوصف هذه الجائزة بأنها جائزة نوبل للرياضيات لأن نوبل لا تُقدم جائزة للمساهمات العلمية في مجال الرياضيات. منافسة بذلك ميدالية فيلدز. تبلغ قيمة الجائزة 7.5 مليون كرونة نروجية (1 مليون دولار). وتعد من أكبر الجوائز التي تمنح في حقل الرياضيات بقميتها المالية التي تصل إلى 800 ألف دولار سابقا، وفي عام 2008 وصلت قيمة الجائزة لأكثر من مليون دولار.

19

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/19&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

20

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/20&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

21

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/21&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

22

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/22&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

23

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/23&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

24

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/24&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

25

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/25&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

26

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/26&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

27

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/27&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

28

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/28&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

29

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/29&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

30

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/30&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

31

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/31&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

32

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/32&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

33

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/33&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

34

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/34&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

35

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/35&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

36

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/36&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

37

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/37&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

38

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/38&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

39

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/39&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث

40

 ع - ن - ت  

أختر النوع المناسب لهذا القسم، سواء كان مقالة مختارة أو صورة وغيرهما..؟



مقالات مختارة


صور مختارة

رابط=//ar.wikipedia.org/w/index.php?title=%D8%A8%D9%88%D8%A7%D8%A8%D8%A9:%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA/%D9%85%D9%82%D8%A7%D9%84%D8%A9_%D9%85%D8%AE%D8%AA%D8%A7%D8%B1%D8%A9/40&action=edit&preload=قالب:صورة بانوراما/تضمين

صور بانوراما


إقتباسات


هل تعلم


أحداث