Damped_spring.gif (110 × 359 بكسل حجم الملف: 207 كيلوبايت، نوع MIME: image/gif، ‏ملفوف، ‏65 إطارا، ‏4٫6ث)

ملخص

الوصف Illustration of en:Damping
التاريخ (UTC)
المصدر self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code).
المؤلف Oleg Alexandrov
إصدارات أخرى Harmonic version
GIF منشأ الملف
InfoField
 
هذا الرسم المتجهي أُنشئ بواسطة MATLAB
نص برمجي مصدري
InfoField

MATLAB code

% Illustration of a damped spring

function main()

% colors
   black =    [0, 0, 0];
   white    = 0.99*[1, 1, 1];
   cobalt   = [0 	71 	171]/256;
   pblue    = [0 	49 	83]/256;
   tene     = [205 	87 	0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color    = tene;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;

   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 8;

   A = 0.45; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)

   %  Each of the small lines has length l
   l = 0.05;

   N = 15;  % times per oscillation 
   No = 4; % number of oscillations
   damping = 0.1; % controls the damping
   for i = 1:(N*No+5)

      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;

   
      t = 2*pi*(i-1)/(N-0)+pi/2; % current time
      H= A*exp(-damping*t)*sin(t) +  B;      % position of the mass

      % plot the spring from Start to End
      Start = [0, 0]; End = [0, H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 

      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
            
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);

      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);

	  
	  % the bounding box
	  Sx = -0.4*ww;  Sy = B-A*exp(-damping*3*pi/2)-ms+0.05; 
	  Lx = 0.4*ww+l; Ly=l;
	  axis([Sx, Lx, Sy, Ly]);
	  plot(Sx, Sy, '*', 'color', white); % a hack to avoid a saveas to eps bug
	  
      saveas(gcf, sprintf('Spring_frame%d.eps', 1000+i), 'psc2') %save the current frame
      disp(sprintf('Spring_frame%d', 1000+i)); %show the frame number we are at
      
      pause(0.1);
      
   end

% The following command was used to create the animated figure.    
% convert -antialias -loop 10000  -delay 7 -compress LZW Spring_frame10* Damped_spring.gif
   

function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B

   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
   
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
   
   X=linspace(0, 1, Npoints);

   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
   
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 

% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
   
% shift by b to the right and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 

   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end

%  shift the spring to start from 0
   X = X-X(1);
   
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];

   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end

function plot_wall(S, E, l, lw, wall_color)

%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
   
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

   V=l*(0:0.1:1);

   for i=0:(no-1)
      plot(S+ i*spacing + V, V, 'color', wall_color)
   end

ترخيص

Public domain أنا، مالِك حقوق تأليف ونشر هذا العمل، أجعله في النِّطاق العامِّ، يسري هذا في أرجاء العالم كلِّه.
في بعض البلدان، قد يكون هذا التَّرخيص غيرَ مُمكنٍ قانونيَّاً، في هذه الحالة:
أمنح الجميع حق استخدام هذا العمل لأي غرض دون أي شرط ما لم يفرض القانون شروطًا إضافية.

الشروحات

أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف

العناصر المصورة في هذا الملف

يُصوِّر

٢٤ يونيو 2007

٢١١٬٥٦٨ بايت

٤٫٥٤٩٩٩٩٩٩٩٩٩٩٩٩٩ ثانية

٣٥٩ بكسل

١١٠ بكسل

تاريخ الملف

اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.

زمن/تاريخصورة مصغرةالأبعادمستخدمتعليق
حالي17:11، 11 أكتوبر 2008تصغير للنسخة بتاريخ 17:11، 11 أكتوبر 2008110 × 359 (207 كيلوبايت)Nard the Bardreplace lost file
03:54، 24 يونيو 2007لا تصغير110 × 359 (207 كيلوبايت)Oleg AlexandrovIllustration of en:Damping {{Information |Description= |Source=self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code). |Date= 02:42, 24 June 2007 (UTC) |Autho

ال3 صفحات التالية تستخدم هذا الملف:

الاستخدام العالمي للملف

الويكيات الأخرى التالية تستخدم هذا الملف: