مستخدم:روضة الهدر/ملعب

الشكل (2)


أولا ما هي القوة ؟

القوة هو ذلك التأثير الذي يسبب تغير حالة الجسم (تشويه) أو يسبب تحركه (تغير موضع) إن كان ساكناً و

الذي يسبب تغير حركته (تسارع - تباطؤ - توقف) أو اتجاهه إن كان متحركا.

والقوة التي نناقشها اليوم هي القوة التي تؤثر في جسم ساكن فتحركه دون تشويه. هذه القوة عندما تؤثر في الجسم الساكن فإنها :

  1. تؤثر في نقطة معينة منه تسمى نقطة التأثير.
  2. تسبب حركته باتجاه معين يسمى جهة القوة.
  3. تؤثر على الجسم بشدة معينة تسمى شدة القوة.

وهذه هي العناصر التي تتعين بها القوة (عناصر القوة).

فمثلا لو أثرنا على صندوق ساكن بقوة دفع بواسطة يدنا فكما هو موضح بالشكل الجانبي (1) , تؤثر اليد في نقطة معينة منه هي نقطة التأثير , وتسبب حركته باتجاه اليمين وهي جهة القوة ,

ومثلا بمقدار 1 نيوتن هي شدة القوة حيث تقدر شدة القوة بنيوتن.

ولذلك اتفق على تمثيل القوة بشعاع لأن القوة عبارة عن شدة وجهة ,

فبداية الشعاع أو نهايته : ستمثل نقطة تأثير القوة .

وجهة الشعاع : ستمثل جهة القوة.

وطول الشعاع : سيمثل شدة القوة.

وتطبيقا لهذا الكلام يصبح تمثيل القوة في المثال السابق كما في الشكل الجانبي (2).

ولكن السؤال الآن : ماذا لو أثر في الجسم الواحد أكثر من قوة في آن معاً ؟

سوف تؤثر كل قوة بفعل مافي هذا الجسم وفي نهاية المطاف سوف يكون هناك نتيجة تأثير واحدة هي مجموع أفعال هذه القوى في الجسم ,

وبمعنى آخر : محصلة القوى هي قوة وحيدة تحدث في الجسم الأثر نفسه الذي تحدثه القوى معاً.

وبما أننا عبرنا عن القوى بأشعة فإذا يكون مجموع أفعال هذه القوى في الجسم هو عبارة عن جمع أشعة هذه القوى جمعا شعاعياً فينتج لنا الشعاع الممثل

لأفعال كل هذه القوى والذي نسميه محصلة القوى.

ولذلك فإن إيجاد محصلة قوى مؤثرة في جسم ما مهم جدا في الميكانيك . وإيجادها يكون بتعيين عناصرها التي ذكرنها سابقا (نقطة التأثير والجهة والشدة),

وطريقة تعيينهم قد تختلف من حالة لأخرى وذلك حسب توضع حوامل القوى (على حامل واحد - أم على حوامل متقاطعة - أم على حوامل متوازية) وهذا ما سيتضح لاحقا من خلال فقرة الأمثلة.

محصلة قوتين على حامل واحد
القوتين بجهة واحدة القوتين بجهتين متعاكستين
  • نقطة تأثيرها : نقطة التأثير المشتركة للقوتين.
  • جهتها  : بجهة القوتين.
  • شدتها  : جمع شدتي القوتين جمع عددي.
  • نقطة تأثيرها : نقطة التأثير المشتركة للقوتين.
  • جهتها  : بجهة القوة الأكبر.
  • شدتها  : طرح شدة القوة الأصغر من شدة القوة الأكبر طرح عددي
محصلة 3 قوى أو أكثر على حامل واحد
القوى بجهة واحدة القوى بجهات مختلفة
  • نقطة تأثيرها : نقطة التأثير المشتركة للقوى.
  • جهتها  : بجهة القوى .
  • شدتها  : جمع شدات القوى جمع عددي.

.

نوجد محصلة القوى في كل جهة على حدة فننتقل
لحالة قوتين على حامل واحد بجهتين متعاكستين 
محصلة قوتين متقاطعتين(متلاقيتين) (( يمكننا تعيينها بعدة طرق كما ذكر سابقا وذلك حسب المعطيات التي معنا))
الطريقة البيانية ( أي باستخدام مسطرة وتحديد مقياس رسم ) الطريقة البيانية التحليلية الطريقة التحليلية (تحليل القوتين إلى مساقط )
  • نقطة تأثيرها : نقطة تقاطع القوتين.
  • جهتها :بعد وضع بداية الشعاع الثاني على نهاية الشعاع الأول تكون

الجهة من بداية الشعاع الأول إلى نهاية الشعاع الثاني.

  • شدتها : طول الشعاع المرسوم من بداية الشعاع الأول حتى

نهاية الشعاع الثاني, نقيسه بالمسطرة وثم نستنتج الشدة من مقياس الرسم .

  • نقطة تأثيرها  : نقطة تقاطع القوتين.
  • جهتها : في حال رسمنا متوازي أضلاع فهي :من نقطة التأثيرإلى

الرأس المقابل.

في حال رسمنا مثلث فهي : من بداية الشعاع الأول إلى نهاية الشعاع

الثاني.

  • شدتها : سواء رسمنا متوازي أضلاع أو مثلث, بما أن الشدة تمثل

ضلع مجهول في المثلث فإننا نحسبها باستخدام قوانين المثلثات .

وبالتالي عندما يكون معنا شدتي القوة والزاوية بينهما

فإننا نستخدم قانون التجيب لحساب شدة المحصلة :

  • نقطة تأثيرها : نقطة تقاطع القوتين.
  • جهتها : تحدد بالزاوية التي بين المحصلة والأفق αR. ونحسبها باستخدام ظل

زاوية المحصلة الذي يساوي مسقط المحصلة العيني على مسقط المحصلة السيني :

tan αR = αR

  • شدتها : تحسب باستخدام القانون :

ملاحظة : نكتب R أو FR


وكذلك Rx أو FRx

محصلة 3 قوى متقاطعة (متلاقية) أو أكثر في نقطة واحدة
متقاطعة في مستو متقاطعة في فراغ
الطريقة البيانية (رسم مضلع قوى .) أو الطريقة التحليلية (تحليل القوى إلى مساقط في مستو) الطريقة التحليلية (تحليل القوى إلى مساقط في الفراغ)
  • نقطة تأثيرها : نقطة تقاطع

القوى.

  • جهتها : بعد رسم مضلع

القوى عن طريق إزاحة الأشعة

وترتيبها وراء بعضها بوضع بداية

الشعاع على نهاية الشعاع الذي قبله

تكون الجهة من بداية الشعاع الأول

حتى نهاية الشعاع الأخير.

  • شدتها : طول الشعاع المرسوم

من بداية الشعاع الأول حتى نهاية

الشعاع الاخير, نقيسه بالمسطرة

وثم نستنتج الشدة من مقياس الرسم.

  • نقطة تأثيرها : نقطة تقاطع القوى .
  • جهتها : تحدد بالزاوية التي بين المحصلة والأفق αR.

ونحسبها باستخدام ظل زاوية المحصلة الذي يساوي

مسقط المحصلة العيني على مسقط المحصلة السيني :

tanαR = αR

  • شدتها : تحسب باستخدام القانون:

ملاحظة : نكتب R أو FR

وكذلك Rx أو FRx

  • نقطة تأثيرها : نقطة تقاطع القوى.
  • جهتها : تحدد إما بالزاوية التي بين المحصلة ومحور السينات αR أو

محور العينات βR أو محور الصادات R. ونحسبها باستخدام تجيب هذه الزوايا

عن طريق العلاقات :

cosαR = αR

cosβR = βR

cosR =R

  • شدتها : تحسب باستخدام القانون :

ملاحظة : نكتب R أو FR

وكذلك Rx أو FRx

محصلة قوتين متوازيتين
القوتين بجهة واحدة القوتين بجهتين متعاكستين
  • نقطة تأثيرها : تقع على القطعة المستقيمة الواصلة بين نقطتي تأثير

القوتين وأقرب إلى القوة الأكبر وتحقق العلاقة :

F1 × d1 = F2 × d2

فبحساب d1 أو d2 (حيث كل منهما يعبر عن بعد إحدى القوتين عن المحصلة )نتمكن من تحديد نقطة تأثير المحصلة.

  • جهتها : بجهة القوتين.
  • شدتها : مجموع شدتي القوتين جمع عددي .
  • نقطة تأثيرها : تقع على امتداد القطعة المستقيمة الواصلة بين نقطتي تأثير

القوتين وأقرب إلى القوة الأكبر وتحقق العلاقة :

F1 × d1 = F2 × d2

  • جهتها : بجهة القوة الأكبر .
  • شدتها : ناتج طرح شدة القوة الأصغر من شدة القوة الأكبر.
محصلة 3 قوى متوازية (مستوية)أو أكثر
القوى بجهة واحدة القوى بجهات متعاكسة
  • جهتها : بجهة القوى.
  • شدتها : مجموع شدات القوى جمع عددي.
  • نقطة تأثيرها :نحددها بالاستعانة بالنظرية (عزم محصلة القوى حول نقطة تساوي مجموع عزوم تلك القوى حول تلك النقطة)

وقانون عزم قوة حول نقطة = القوة × الذراع (البعد العمودي بين القوة والنقطة)

حيث : نختار نقطة ويفضل أن يكون مار بها إحدى القوى (من أجل اختصار عزم حيث ينعدم عزم القوة في النقطة المارة بها بسبب انعدام الذراع) ونطبق النظرية كالتالي :

شدة المحصلة × الذراع dR (والذي يمثل البعد بين نقطة تأثير المحصلة والنقطة المختارة التي نحسب العزوم حولها )= مجموع عزوم القوى حول تلك النقطة. فلو اخترنا حساب العزوم حول النقطة C نكتب  :

FR × dR = (F1 × ac )+( F2 × bc) + (F3 × 0)

ومن هذه العلاقة نستطيع حساب ذراع المحصلة dR أي البعد بين النقطة المختارة C ونقطة التأثير أي نكون بذلك حددنا نقطة التأثير.

  • جهتها : نحدد جهة موجبة اختيارية ونفترض أن شدات القوى التي بهذه الجهة هي شدات موجبة وأن شدات القوى التي عكس هذه الجهة هي شدات سالبة ثم نجمع الشدات مع مراعاة الإشارة فإذا كان ناتج الجمع موجب تكون جهة المحصلة من جهة هذه الجهة الموجبة الاختيارية وإذا كان ناتج الجمع سالبا تكون جهة المحصلة عكس الجهة الاختيارية:

في الصورة حددنا جهة موجبة اختيارية ومنه :

F1 - F2 - F3 + F4 = 3-2-4+1 = -2

الناتج سالب فجهة المحصلة عكس الجهة الاختيارية

  • شدتها : القيمة المطلقة لناتج الجمع العددي (حيث أيضا نجمع الشدات مع مراعاة الإشارة):

FR = |F1 - F2 - F3 + F4| = |3 - 2 - 4 + 1| = 2

  • نقطة التأثير : تحدد كذلك باستخدام نظرية (عزم محصلة القوى

حول نقطة تساوي مجموع عزوم تلك القوى حول تلك النقطة): لنحسب العزوم حول النقطة e :

FR × dR = (F1 × ae)-(F2 × be)-(F3 × ce)+(F4 × 0)

ومن هذه العلاقة نستنتج dR أي بعد المحصلة عن النقطة المختارة e وبذلك نحدد نقطة التأثير.

المزدوجة

هي حالة خاصة من توازي القوى فهي عبارة عن قوتين متوازيتين حاملاً متعاكستين جهةً متساويتين شدةً وبالتالي تكون شدة محصلتهما طرحهما أي تساوي الصفر.

إذا : محصلة أي مزدوجة تكون معدومة ولذلك لاتسبب حركة انسحابية للجسم وإنما فقط فعل تدويري نسميه عزم المزدوجة

[1][2]

[3]

[4]

[5]

  1. ^ "بحث عن القوة - موضوع". موضوع. اطلع عليه بتاريخ 2017-11-09.
  2. ^ "Kraft". Wikipedia (بالألمانية). 4 Oct 2017.
  3. ^ Technische Mechanik (ط. 6. Aufl). Berlin [u.a.]: Springer. 1998. ISBN:3540644571. OCLC:62043913.
  4. ^ شرح درس القوى المتوازية المستوية - الرياضيات: الميكانيكا - الثانوية العامة - نفهم، اطلع عليه بتاريخ 2017-11-09
  5. ^ http://moed.gov.sy/uploads/pdf-curricula/0-9/physics-chemistry.pdf